Location: Home > Research > Research Progress
Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton
2009-08-28                |  Print  |  Text Size: A A A  |   Close
In this research, an elasto-plastic cellular automaton (EPCA) with the associated code was developed to simulate the non-linear fracturing process of rocks under uniaxial compression. It is a useful method for simulating the process of self-organization of the complex system using simple rules. It has the advantages of localization, parallelization, and being able to consider the heterogeneity of rocks. By this means, the fracturing processes, stress–strain curves, acoustic emissions, and compressive strength of 2-D heterogeneous rock specimens under uniaxial compression were numerically investigated using the EPCA code for different cases such as: (1) the influence of the cyclic load; (2) the influence of inhomogeneity; (3) the effect of different softening coefficients; (4) the effect of specimen sizes and height/width ratios; (5) the effect of different spatial distributions of material parameters; (6) the influence of different yield criteria; and (7) the influence of the residual strength coefficient. The results indicate that the numerical simulation reproduced some of the well-known phenomena observed by previous researchers in uniaxial compression tests.
Copyright © 2005-2008, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
Xiaohongshan, Wuchang, Wuhan 430071, P. R. China
E-mail: irsm@whrsm.ac.cn